Search results

Search for "ionic hydrogenation" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Synthesis of 5-arylacetylenyl-1,2,4-oxadiazoles and their transformations under superelectrophilic activation conditions

  • Andrey I. Puzanov,
  • Dmitry S. Ryabukhin,
  • Anna S. Zalivatskaya,
  • Dmitriy N. Zakusilo,
  • Darya S. Mikson,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2021, 17, 2417–2424, doi:10.3762/bjoc.17.158

Graphical Abstract
  • , as a hydride ion source, was conducted to achieve the ionic hydrogenation of intermediate cationic species. However, no products of ionic hydrogenation were obtained, only the product of the hydrophenylation of the acetylene bond 5a was quantitatively isolated (compare with data shown in Scheme 5
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2021

Novel library synthesis of 3,4-disubstituted pyridin-2(1H)-ones via cleavage of pyridine-2-oxy-7-azabenzotriazole ethers under ionic hydrogenation conditions at room temperature

  • Romain Pierre,
  • Anne Brethon,
  • Sylvain A. Jacques,
  • Aurélie Blond,
  • Sandrine Chambon,
  • Sandrine Talano,
  • Catherine Raffin,
  • Branislav Musicki,
  • Claire Bouix-Peter,
  • Loic Tomas,
  • Gilles Ouvry,
  • Rémy Morgentin,
  • Laurent F. Hennequin and
  • Craig S. Harris

Beilstein J. Org. Chem. 2021, 17, 156–165, doi:10.3762/bjoc.17.16

Graphical Abstract
  • -azabenzotriazole; hinge-binder; ionic hydrogenation; library; pyridine-2(1H)-one; Introduction During a recent medicinal chemistry program targeting a kinase to treat skin disorders, we identified the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one motif (1) as an interesting starting point. Recently, both
  • our attention to ionic hydrogenation conditions [12]. Although ionic hydrogenation conditions have never been cited for this type of transformation, we anticipated that, if successful, sample preparation would be further simplified for the final preparative LC–MS purification step owing to the high
  • -chloro-4-fluoronicotinic acid and 2-fluoro-4-iodonicotinic acid, respectively. Perhaps the highlight of our library route development was the novel transformation to the desired pyridin-2(1H)-one motif via in situ formation of the C2–OAt ether during HATU coupling and its cleavage under ionic
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Photochromic diarylethene ligands featuring 2-(imidazol-2-yl)pyridine coordination site and their iron(II) complexes

  • Andrey G. Lvov,
  • Max Mörtel,
  • Anton V. Yadykov,
  • Frank W. Heinemann,
  • Valerii Z. Shirinian and
  • Marat M. Khusniyarov

Beilstein J. Org. Chem. 2019, 15, 2428–2437, doi:10.3762/bjoc.15.235

Graphical Abstract
  • cyclohexenone (6 and 7) bridges via intermediate bromoketone 2 and chalkone 5. Cyclopentenone 3 was synthesized by adapting a previously reported two-step protocol [35] starting from ethyl 4-(2,5-dimethylthiophen-3-yl)-3-oxobutanoate and bromoketone 2. Ionic hydrogenation [36] of 3 provided diarylethene 4 with
PDF
Album
Supp Info
Letter
Published 15 Oct 2019

A practical synthesis of long-chain iso-fatty acids (iso-C12–C19) and related natural products

  • Mark B. Richardson and
  • Spencer J. Williams

Beilstein J. Org. Chem. 2013, 9, 1807–1812, doi:10.3762/bjoc.9.210

Graphical Abstract
  • -methylpalmitic acid, and 2-oxo-14-methylpentadecane. Keywords: chemoselective reduction; Evans’ auxiliary; Grignard addition; homologation; ionic hydrogenation; Introduction Long-chain iso-fatty acids occur in a broad range of organisms, and are especially abundant in bacteria where, through incorporation into
  • approach to the iso-C12–C14 fatty acids 1–3 commenced from methyl undec-10-enoate (methyl undecylenate) 9. Reaction of 9 with methylmagnesium bromide afforded the tertiary alcohol 10 in 98% yield (Scheme 1). Selective reduction of the tertiary alcohol of 10 was achieved by ‘ionic hydrogenation’ with
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2013
Other Beilstein-Institut Open Science Activities